如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.求小明到达的终止点与原出发点的距离.
如图,在平面直角坐标系中,抛物线与轴交于点C,与轴交于点A(,0),B(,0).(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线与抛物线交于点Q、C两点,过点D作直线DF⊥轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为?若存在,请求出点D的坐标;若不存在,请说明理由.
在菱形ABCD中,∠BAD是锐角,AC,BD相交于点O,E是BD的延长线上一动点(不与点D重合),连接EC并延长和AB的延长线交于点F,连接AE.(1)比较∠F和∠ABD的大小,并说明理由;(2)当△BFC有一个内角是直角时,求证:△BFC∽△EFA;(3)当△BFC与△EFA相似(两三角形的公共角为对应角),且AC=12,DE=5时,求△BFC与△EFA的相似比.
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙边(两边足够长),用长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设.(1)若花园的面积为,求的值;(2)若在处有一棵树与墙CD、AD的距离分别是和,要将这棵树围在花园内(含边界、不考虑树的粗细),求花园面积的最大值.
一个不透明的口袋里装有分别标有汉字“大”、“雅”、“丹”、“棱”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“丹”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“大雅”或“丹棱”的概率;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记下汉字,则乙取出的两个球上的汉字恰能组成“大雅”或“丹棱”的概率为,请指出,的大小关系.
钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)