(本小题满分12分)已知,求.
(本小题满分13分) (1) 已知圆C经过P(4,– 2),Q(–1,3)两点,若圆心C在直线y = 2x上,求圆C的方程;(2) 已知圆M经过坐标原点O,圆心M在直线上,与x轴的另一个交点为A,△MOA为等腰直角三角形,求圆M的方程.
(本小题满分13分) 已知实数满足.(1) 求的取值范围;(2) 求的取值范围.
(本小题满分13分) (1) 椭圆C与椭圆有相同焦点,且椭圆C上一点P到两焦点的距离之和等于,求椭圆C的标准方程;(2) 椭圆的两个焦点F1、F2在x轴上,以| F1F2|为直径的圆与椭圆的一个交点为(3,4),求椭圆标准方程.
设数列的前n项和为,对任意的正整数n,都有成立,记(),(1)求数列的通项公式;(2)记(),设数列的前n和为,求证:对任意正整数n,都有.
重庆市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域是半径为R的圆面.该圆面的内接四边形ABCD是原棚户建筑用地,测量可知边界AB =" AD" = 4万米,BC = 6万米,CD = 2万米,(1)请计算原棚户区建筑用地ABCD的面积及圆面的半径R的值;(2)因地理条件的限制,边界AD、DC不能变更,而边界AB、BC可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧ABC上设计一点P,使得棚户区改造的新建筑用地APCD的面积最大,并求最大值.