(本小题满分10分)选修4-l:几何证明选讲如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.(Ⅰ)求证:△DFE∽△EFA; (Ⅱ)如果FG=1,求EF的长.
设函数,曲线过点,且在点处的切线斜率为2. (1)求a和b的值; (2)证明:.
在△ABC中,角A,B,C的对边分别为a,b,c,已知,且C=120°. (1)求角A;(2)若a=2,求c.
已知,其中为常数. (Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数在上的最小值; (Ⅱ)若函数在上既有极大值又有极小值,求实数的取值范围; (Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.
设函数 (Ⅰ)设,,,证明:在区间内存在唯一的零点; (Ⅱ)设,若对任意,均有,求的取值范围.
设函数,. (1)记为的导函数,若不等式在上有解,求实数的取值范围; (2)若,对任意的,不等式恒成立,求m(m∈Z,m1)的值.