本题满分10分)2010年6月11日,第十九届世界杯在南非拉开帷幕.比赛前,某网站组织球迷对巴西、西班牙、意大利、英格兰四支夺冠热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参与竞猜(1)若三人中每个人可以选择任一球队,且选择各个球队是等可能的,求四支球队中恰好有两支球队有人选择的概率;(2)若三人中有一名女球迷,假设女球迷选择巴西队的概率为,男球迷选择巴西队的概率为,记x为三人中选择巴西队的人数,求x的分布列和期望
(本题满分12分) 已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为. (Ⅰ)求的解析式; (Ⅱ)在△ABC中,是角A、B、C所对的边,且满足,求角B的大小以及的取值范围.
(本题满分12分)已知△ABC的顶点,,其中0<<. (Ⅰ)若,求角的值; (Ⅱ)若的面积为,求的值
(本题满分10分)设圆内有一点,为过点的直线。 (1)当直线的倾斜角为时,求弦的长 (2)当点为弦的中点时,求直线的方程
已知函数. (Ⅰ)若为的极值点,求的值; (Ⅱ)若的图象在点()处的切线方程为,求在区间上的最大值; (Ⅲ)当时,若在区间上不单调,求的取值范围.
已知函数. (I)若函数在上是减函数,求实数的取值范围; (II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由? (III)当时,证明:.