本题满分10分)2010年6月11日,第十九届世界杯在南非拉开帷幕.比赛前,某网站组织球迷对巴西、西班牙、意大利、英格兰四支夺冠热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参与竞猜(1)若三人中每个人可以选择任一球队,且选择各个球队是等可能的,求四支球队中恰好有两支球队有人选择的概率;(2)若三人中有一名女球迷,假设女球迷选择巴西队的概率为,男球迷选择巴西队的概率为,记x为三人中选择巴西队的人数,求x的分布列和期望
抛物线上纵坐标为的点到焦点的距离为2.(Ⅰ)求的值;(Ⅱ)如图,为抛物线上三点,且线段,, 与轴交点的横坐标依次组成公差为1的等差数列,若的面积是面积的,求直线的方程.
已知函数R).(Ⅰ)若,求曲线在点处的的切线方程; (Ⅱ)若对任意恒成立,求实数的取值范围.
已知等差数列的公差不为零,且,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.
如图,平面平面,是正三角形,,. (Ⅰ)求证:; (Ⅱ)求直线与平面所成角的正弦值.
在中,角所对的边分别为.已知.(Ⅰ)若.求的面积;(Ⅱ)求的取值范围.