(本小题满分12分)已知函数f1(x)=,f2(x)=(其中m ∈R且m≠0).(Ⅰ)讨论函数f1(x)的单调性;(Ⅱ)若m<-2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;(Ⅲ)设函数g(x)=当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
(本小题满分7分)选修4-4:坐标系与参数方程 已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线l的极坐标方程为,圆的参数方程为(参数),求圆心到直线的距离.
(本小题满分7分)选修4-2:矩阵与变换 已知矩阵,其中R,若点P(1,1)在矩阵A的变换下得到点P′(0,-3),求矩阵A的特征值及特征向量.
已知函数的定义域为. (Ⅰ)求实数的值;(Ⅱ)探究是否是上的单调函数?若是,请证明;若不是,请说明理由;(Ⅲ)求证:,(其中为自然对数的底数).
已知抛物线C的方程为,A,B是抛物线C上的两点,直线AB过点M。(Ⅰ)设是抛物线上任意一点,求的最小值;(Ⅱ)求向量与向量的夹角(O是坐标原点);(Ⅲ)在轴上是否存在异于M的一点N,直线AN与抛物线的另一个交点为D,而直线DB与轴交于点E,且有?若存在,求出N点坐标;若不存在,说明理由.
(本小题满分13分)设不等式组确定的平面区域为U, 确定的平面区域为V.(Ⅰ)定义坐标为整数的点为“整点”. 在区域U内任取3个整点, 求这些整点中恰有2个整点在区域V的概率; (Ⅱ)在区域U内任取3个点,记此3个点在区域V的个数为X, 求X的概率分布列及其数学期望.