(本小题满分12分)已知函数f1(x)=,f2(x)=(其中m ∈R且m≠0).(Ⅰ)讨论函数f1(x)的单调性;(Ⅱ)若m<-2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;(Ⅲ)设函数g(x)=当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
设为实数,函数. (Ⅰ)若,求的取值范围; (Ⅱ)求函数的最小值.
已知,求下列各式的值: (Ⅰ); (Ⅱ).
已知集合,. (Ⅰ)若,求(); (Ⅱ)若,求实数的取值范围.
已知函数 (1)当,且时,求证: (2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由.
已知函数 (1)若函数的值域为,求实数的取值范围; (2)当时,函数恒有意义,求实数的取值范围.