已知函数.(Ⅰ)求函数的周期和最大值; (Ⅱ)已知,求的值.
(本小题满分12分) 已知的三内角A,B,C所对三边分别为a,b,c,且 (I)求的值。 (II)若的面积求a的值。
(本小题满分12分)一射击测试每人射击三次,每击中目标一次记10分。没有击中记0分,某人每次击中目标的概率为 (I)求此人得20分的概率;(II)求此人得分的数学期望与方差。
(本小题满分12分) 已知甲盒内有大小相同的1个红球和3个白球,乙盒内有大小相同的2个红球和4个白球,现从甲、乙两个盒内各任取2个球. (1)求取出的4个球均为白球的概率; (2)求取出的4个球中恰有1个红球的概率; (3)设为取出的4个球中红球的个数,求的分布列和数学期望.
(本小题满分12分) 如图,四棱锥中,底面, .底面为梯形,,.,点在棱上,且. (1)求证:平面; (2)求二面角的大小.
(本小题满分12分) 已知圆的方程为. (1)求过点的圆的切线方程; (2)过点作直线与圆交于两点,求的最大面积以及此时直线的斜率.