、已知,(),直线与函数、的图像都相切,且与函数的图像的切点的横坐标为1.(Ⅰ)求直线的方程及的值;(Ⅱ)若(其中是的导函数),求函数的最大值;(Ⅲ)当时,求证:.
(本小题满分10分)长方体ABCD-A1B1C1D1的侧棱AA1的长是a,底面ABCD的边长AB=2a,BC=a,E为C1D1的中点。(1)求证:DE⊥平面BCE;(2)求二面角E-BD-C的正切值。
(本小题满分8分)在△ABC中,是角所对的边,且满足.(1)求角的大小;(2)设,求的最小值.
(本小题满分14分) 对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.(1)当Φ(x)=2x时 ①求f0(x)和fk(x)的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;(2)若Φ(x)=x2,则是否存在正整数k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,请说明理由.
(本小题满分12分)设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足=x1x2+2(y1+y2).(1)求证:直线l过定点;(2)设(1)中的定点为P,若点M在射线PA上,满足,求点M的轨迹方程.
(本小题满分12分)已知等差数列{an2}中,首项a12=1,公差d=1,an>0,n∈N*.(1)求数列{an}的通项公式;(2)设bn=,数列{bn}的前n项和为Tn; ①求T120; ②求证:当n>3时, 2