已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N(Ⅰ)求E的方程;(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由
已知函数f(x)=k(x﹣1)ex+x2.(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.
求曲线y=sinx与直线,,y=0所围成的平面图形的面积.
设命题p:(4x﹣3)2≤1;命题q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.
已知P={x|x2﹣8x﹣20≤0},S={x|1﹣m≤x≤1+m}(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的取值范围.
已知数列{an}的前n项和Sn=n2+n.(1)求数列{an}的通项公式;(2)记Tn=,若对于一切的正整数n,总有Tn≤m成立,求实数m的取值范围.