((本小题满分12分)由倍角公式,可知可以表示为的二次多项式.对于,我们有可见可以表示为的三次多项式。一般地,存在一个次多项式,使得,这些多项式称为切比雪夫多项式.(I)求证:;(II)请求出,即用一个的四次多项式来表示;(III)利用结论,求出的值.
设关于x的一元二次方程x2+2ax+b2=0. (1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率; (2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
6本不同的书,按以下要求各有多少种分法? (1)平均分成三组; (2)分成1本,2本、3本三组; (3)平均分给甲、乙、丙三人; (4)分给甲、乙、丙三人,一人拿1本,一人拿2本、一人拿3本; (5)甲得一本,乙得二本,丙得三本.
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面ABC; (2)求二面角A1-BC1-B1的余弦值; (3)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
如图,四棱锥的底面为菱形,,侧面是边长为2的正三角形,侧面底面. (Ⅰ)设的中点为,求证:平面; (Ⅱ)求斜线与平面所成角的正弦值; (Ⅲ)在侧棱上存在一点,使得二面角的大小为,求的值.
已知正方体ABCD-的棱长为1,求直线与AC的距离.