((本小题满分12分)已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0. (1)求a的值; (2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值.]
已知二次函数f(x)有两个零点0和-2,且f(x)最小值是-1,函数g(x)与f(x)的图像关于原点对称. (1)求f(x)和g(x)的解析式; (2)若h(x)=f(x)-λg(x)在区间[-1,1]上是增函数,求实数λ的取值范围.
已知y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2. (1)求x>0时,f(x)的解析式; (2)若关于x的方程f(x)=2a2+a有三个不同的解,求a的取值范围.
已知命题P:存在, 命题Q:任意恒成立。若P且Q为假命题,求实数m的取值范围?
已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}. (1)若a=3,求(CRP)∩Q; (2)若PQ,求实数a的取值范围.