.设是椭圆上的两点,点是线段的中点,线段的垂直平分线与椭圆相交于两点.(1)确定的取值范围,并求直线的方程;(2)试判断是否存在这样的,使得四点在同一个圆上?并说明理由.
以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4. (1).求直线l的参数方程及圆C的极坐标方程; (2).试判断直线l与圆C有位置关系.
如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于F,连接CF并延长交AB于点E. (1).求证:E为AB的中点; (2).求线段FB的长.
已知函数,. (1)a≥-2时,求F(x)=f(x)-g(x)的单调区间; (2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.
已知椭圆(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q). (1).当p+q≤0时,求椭圆的离心率的取值范围; (2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,的最小值为,求椭圆的方程.
如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点, (1).求证:D1E⊥A1D; (2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由