设函数f(x)= x3-3ax+b (a≠0).(Ⅰ)若曲线y= f(x)在点(2,f(x))处与直线相切,求的值;(Ⅱ)求函数f(x)的单调区间与极值点.
已知数列的前项和为,且. (1)求的通项公式; (2)设,若恒成立,求实数的取值范围; (3)设,是数列的前项和,证明.
设函数, (Ⅰ)求的最大值,并写出使取最大值时x的集合; (Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,,求的面积的最大值.
已知函数,,(为自然对数的底数). (1)若不等式对于一切恒成立,求a的最小值; (2)若对任意的,在上总存在两个不同的,使成立,求a的取值范围.
已知函数的导数,曲线在点处的切线方程为. (1)求b,c的值; (2)求函数的单调区间; (3)设函数,且在区间内存在单调递减区间,求实数a的取值范围.
已知中,角A,B,C所对的边分别是a,b,c,,且的周长,面积. (1)求c和的值; (2)求的值.