(本小题满分13分)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示。(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;(Ⅱ)在抽出的100名志原者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望。
(本小题满分12分)根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线拟合(,单位为小时,表示气温,单位为摄氏度,,,现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高。 (1)求这条曲线的函数表达式; (2)求这一天19时整的气温。
(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4. (Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率; (Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
已知数列满足=-1,,数列满足 (1)求证:数列为等比数列,并求数列的通项公式. (2)求证:当时, (3)设数列的前项和为,求证:当时,.
(本小题满分13分)已知圆C:过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F. (1)求切线PF的方程; (2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。 (3)若Q为抛物线E上的一个动点,求的取值范围.
(本小题满分13分)已知函数 (Ⅰ)求函数在(1, )的切线方程 (Ⅱ)求函数的极值 (Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;