(本小题共14分)如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.
(本小题满分14分)已知,函数,. (Ⅰ)求函数的单调区间;(Ⅱ)求证:对于任意的,都有.
(本小题满分13分)已知函数在处取得极值。(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程。
(本小题满分13分)已知函数.(1)求的定义域及最小正周期; (2)求在区间上的最值.
(本小题满分12分)已知 , .求下列式子的值(1); (2) (3)
(本小题满分14分)已知数列中,,其前项和满足.(Ⅰ)求证:数列为等差数列,并求的通项公式;(Ⅱ)设,求数列的前项和;(Ⅲ)设(为非零整数,),是否存在确定的值,使得对任意,有恒成立.若存在求出的值,若不存在说明理由。