已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)如果对于任意的,总成立,求实数的取值范围;(Ⅲ)是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
(本小题满分12分)设函数. (1)写出的最大值M,最小值m,最小正周期T; (2)试求最小正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数至少有一个值是M和一个值是m .
(本小题满分12分) 某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的。约定用有序实数对表示“甲在号车站下车,乙在号车站下车”。 (Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来; (Ⅱ)求甲、乙两人同在第3号车站下车的概率; (Ⅲ)求甲、乙两人在不同的车站下车的概率。
(本小题满分12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5. (1)求第四小组的频率; (2)参加这次测试的学生人数是多少? (3)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(本小题满分10分)已知(I)化简 (II)若是第三象限角,且,求的值。
已知椭圆的两个焦点分别为F1(-c,0),F2(c,0),(c>0),过点E的直线与椭圆交于A、B两点,且F1A//F2B,|F1A|=2|F2B|, (1)求离心率; (2)求直线AB的斜率; (3)设点C与点A关于标标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值。