(本小题满分12分)如图所示,在正三棱柱中,,,是的中点,在线段上且.(I)证明:面;(II)求二面角的大小.
某地政府为科技兴市,欲在如图所示的矩形的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形(线段和为两个底边),已知其中曲线段是以为顶点、为对称轴的抛物线的一部分.分别以直线为轴和轴建立平面直角坐标系.(1)求曲线段所在抛物线的方程;(2)设点的横坐标为,高科技工业园区的面积为.试求关于的函数表达式,并求出工业园区面积的最大值.
.椭圆的两个焦点分别为、,点在椭圆上,且,,.(1)求椭圆的方程;(2)若直线过圆的圆心交椭圆于、两点,且是的中点,求直线的方程.
如图,正方形与等边所在平面互相垂直,,为中点,为中点(1)求证:∥平面;(2)求三棱锥的体积.
设命题函数在上是减函数;命题关于的方程有实数根. 若命题是真命题,命题是假命题,求实数的取值范围.
(本小题满分14分)已知:椭圆的左右焦点为;直线经过交椭圆于两点.(1)求证:的周长为定值.(2)求的面积的最大值?