(本小题满分12分)如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE(Ⅰ)求证:DE⊥平面;(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
已知a,b,c分别为△ABC三个内角A,B,C的对边,c = asinC-ccosA.(1)求A;(2)若a=2,△ABC.的面积为,求b,c.
已知公差不为零的等差数列满足,且成等比数列。(1)求数列的通项公式;(2)设为数列的前n项和,求数列的前n项和
已知函数。(1)求的定义域及最小正周期;(2)求的单调递减区间.
已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)设.如果对任意,,求的取值范围.
在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.