如图扇形AOB是一个观光区的平面示意图,其中∠AOB的圆心角为,半径OA为1Km,为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由圆弧AC、线段CD及线段BD组成。其中D在线段OB上,且CD//AO,设∠AOC=θ,(1)用θ表示CD的长度,并写出θ的取值范围。(2)当θ为何值时,观光道路最长?
(本小题共12分) 一个有穷等比数列的首项为,项数为偶数,如果其奇数项的和为,偶数项的和为,求此数列的公比和项数.
(本小题共12分) 如图,△ACD是等边三角形,△ABC是等腰直角 三角形,∠ACB=90°,BD交AC于E,AB=2. (1)求cos∠CBE的值;(2)求AE。
(本题满分15分) 已知偶函数满足:当时,,当时, (1) 求当时,的表达式; (2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。 (3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。
(本题满分15分)已知函数 (1) 求函数的最小值 求证:当时,
(本题满分14分) 已知函数,,其图象过点 (1) 求的解析式,并求对称中心 (2) 将函数的图象上各点纵坐标不变,横坐标扩大为原来的2倍,然后各点横坐标不变,纵坐标扩大为原来的2倍,得到的图象,求函数在上的最大值和最小值.