((本小题满分12分)某学校准备购买一批电脑,在购买前进行的市场调查显示:在相同品牌、质量与售后服务的条件下,甲、乙两公司的报价都是每台6000元。甲公司的优惠条件是购买10台以上的,从第11台开始按报价的七折计算,乙公司的优惠条件是均按八五折计算。(1)分别写出在两公司购买电脑的总费用y甲、y乙与购买台数x之间的函数关系式;(2)根据购买的台数,你认为学校应选择哪家公司更合算?说明理由。
已知函数.(Ⅰ)求不等式的解集;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.
在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求C的极坐标方程;(Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点. 求证:(1);(2)
已知函数().(1)若函数在处取得极值,求的值;(2)在(1)的条件下,求证:;(3)当时,恒成立,求的取值范围.
已知椭圆的焦距为,且过点. (1)求椭圆的方程; (2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.