已知函数的最小正周期为(1) 若,求函数的最小值;(2) 在△ABC中,若,且,求的值
(本小题满分12分)椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列,记△的面积为S.(Ⅰ)求椭圆C的方程.(Ⅱ)试判断是否为定值?若是,求出这个值;若不是,请说明理由?(Ⅲ)求S的范围.
(本小题满分12分)如图,在四棱锥中,底面ABCD为直角梯形,,,平面⊥底面,为的中点,是棱上的点,,,(Ⅰ)若是棱的中点,求证:;(Ⅱ)求证:若二面角M-BQ-C为30°,试求的值。
(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.(Ⅰ)求此双曲线的渐近线的方程;(Ⅱ)若分别为上的点,且2|AB|=5|F1F2|,求线段的中点M的轨迹方程,并说明轨迹是什么曲线。
(本小题满分12分)已知等差数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.
(本小题满分12分)已知命题p:方程有两个不相等的实根;q:不等式的解集为R;若p或q为真,p且q为假,求实数m的取值范围。