(本小题满分12分)已知函数f(x)=alnx,(a∈R)g(x)=x2,记F(x)=g(x)-f(x)(Ⅰ)判断F(x)的单调性;(Ⅱ)当a≥时,若x≥1,求证:g(x-1)≥f();(Ⅲ)若F(x)的极值为,问是否存在实数k,使方程g(x)-f(1+x2)=k有四个不同实数根?若存在,求出实数k的取值范围;若不存在,请说明理由。
已知函数与的图像都过点,且在点处有公共切线,求、的表达式。
已知数列满足: (I)求的值; (Ⅱ)求证:数列是等比数列; (Ⅲ)令(),如果对任意,都有,求实数的取值范围.
已知函数 (1)讨论的奇偶性与单调性; (2)若不等式的解集为的值;
已知数列的前n项和为Sn,且. (1)求数列的通项; (2)设,求.
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求: (I) 取出的3件产品中一等品件数X的分布列和数学期望; (II) 取出的3件产品中一等品件数多于二等品件数的概率。