(本小题满分16分)已知, 且.(Ⅰ)当时,求在处的切线方程;(Ⅱ)当时,设所对应的自变量取值区间的长度为(闭区间 的长度定义为),试求的最大值;(Ⅲ)是否存在这样的,使得当时,?若存在,求出的取值范围;若不存在,请说明理由.
袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各是多少?
某医院一天派出医生下乡医疗,派出医生人数及其概率如下:
求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率.
玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球,求:(1)红或黑的概率;(2)红或黑或白的概率.
某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:
(1)计算表中乒乓球优等品的频率; (2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)
在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?