(已知向量,,向量,.(1)当为何值时,向量;(2)若向量的夹角为钝角,求实数的取值范围.
某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:
(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.
如图,四棱锥中,底面为矩形,平面,是的中点. (1)证明://平面; (2)设,三棱锥的体积,求到平面的距离.
四边形 A B C D 的内角 A 与 C 互补, A B = 1 , B C = 3 , C D = D A = 2 . (1)求 C 和 B D ; (2)求四边形 A B C D 的面积.
设函数,记的解集为,的解集为. (1)求; (2)当时,证明:.
将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线. (1)写出的参数方程; (2)设直线与的交点为,以坐标原点为极点,轴正半轴为极坐标建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.