如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP.(2)求证:四边形DEFG为矩形.(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
抛物线的焦点为,过点的直线交抛物线于,两点.①若,求直线的斜率;②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值.
经过作直线交曲线:(为参数)于、两点,若成等比数列,求直线的方程.
如图,四棱锥中,底面为平行四边形,,,⊥底面.①证明:平面平面; ②若二面角为,求与平面所成角的正弦值.
从集合的所有非空子集中,等可能地取出一个. ①记性质:集合中的所有元素之和为10,求所取出的非空子集满足性质的概率;②记所取出的非空子集的元素个数为,求的分布列和数学期望.
在中,角的对边分别为,且.①求角的大小;②求的取值范围.