围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:元)。(1)将总造价表示为的函数: (2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
设函数,. ⑴ 求不等式的解集; ⑵ 如果关于的不等式在上恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为, 以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. ⑴ 求曲线的普通方程和曲线的直角坐标方程; ⑵ 当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.
如图,是的直径,弦与垂直,并与相交于点,点为弦上异于点的任意一点,连结、并延长交于点、. ⑴ 求证:、、、四点共圆; ⑵ 求证:.
已知函数. ⑴ 求函数的单调区间; ⑵ 如果对于任意的,总成立,求实数的取值范围; ⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
如图,曲线与曲线相交于、、、四个点. ⑴ 求的取值范围; ⑵ 求四边形的面积的最大值及此时对角线与的交点坐标.