围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:元)。(1)将总造价表示为的函数: (2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
由下列不等式:,,,,…,你能得到一个怎样的一般不等式?并加以证明.
阅读下面材料: 根据两角和与差的正弦公式,有------①------② 由①+② 得------③ 令有 代入③得 (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:; (Ⅱ)若的三个内角满足,试判断的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
函数,已知是奇函数。 (Ⅰ)求b,c的值; (Ⅱ)求g(x)的单调区间与极值。
如图,已知点D(0,-2),过点D作抛物线:的切线,切点A在第二象限。 (1)求切点A的纵坐标; (2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线,直线OA,OB的斜率为,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。
已知函数.(为自然对数的底) (Ⅰ)求的最小值; (Ⅱ)是否存在常数使得对于任意的正数恒成立?若存在,求出的值;若不存在,说明理由.