某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 / ,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5 m,求斜面EG的倾斜角∠GEF的正切值.
如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE. (1)判断△CDE的形状,并说明理由. (2)若AO=12,求OE的长.
如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A、B两点的距离相等. (1)用直尺和圆规,作出点D的位置(不写做法,保留作图痕迹); (2)连结AD,若∠B=37°,求∠CAD的度数.
(1)解不等式:2(x+1)﹣1≥3x+2,并把解集表示在数轴上. (2)解不等式组,并写出不等式组的整数解.
如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒. (1)试说明:AD∥BC; (2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.
如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF的中点吗?试说明理由