(本小题满分10分)选修4—4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为 (Ⅰ)求直线l与曲线C的普通方程;(Ⅱ)设直线l与曲线C相交于A,B两点,证明:0.
已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。 (Ⅰ)、求数列的通项公式; (Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;
已知上是减函数,且。 (1)求的值,并求出和的取值范围。 (2)求证。 (3)求的取值范围,并写出当取最小值时的的解析式。
设a>0且a≠1, (x≥1) (Ⅰ)求函数f(x)的反函数f-1(x)及其定义域; (Ⅱ)若,求a的取值范围。
设函数,已知是奇函数。 (Ⅰ)求、的值。 (Ⅱ)求的单调区间与极值。
对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数. (1) 若函数为理想函数,求的值; (2)判断函数是否为理想函数,并予以证明; (3) 若函数为理想函数,假定,使得,且,求证:.