某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式; (2)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值
(本小题满分10分)设函数(其中> 0,),且的图象在y轴右侧的第一个最高点的横坐标为. (1)求的最小正周期; (2)如果在区间上的最小值为,求a的值.
(本小题满分10分)已知=,=,=,设是直 线上一点,是坐标原点 ⑴求使取最小值时的; ⑵对(1)中的点,求的余弦值。
(本小题满分8分)已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、 黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率; (2)列出一次任取2个球的所有基本事件; (3)从中取2个球,求至少有一个红球的概率.
(本小题满分8分)已知角的终边在上,求 (1)的值; (2)的值.
已知二次函数满足条件:①是的两个零点;②的最小值为 (1)求函数的解析式; (2)设数列的前项积为,且,,求数列的前项和 (3)在(2)的条件下,当时,若是与的等差中项,试问数列中 第几项的值最小?并求出这个最小值。