.(本小题满分13分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型的基本要求;(2)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
已知函数,的图像分别与轴、轴交于、两点,且,函数. 当满足不等式时,求函数的最小值.[
已知点列满足:,其中,又已知,. (I)若,求的表达式; (II)已知点B,记,且成立,试求a的取值范围; (III)设(2)中的数列的前n项和为,试求:。
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。 (I)求曲线的方程; (II)试证明:在轴上存在定点,使得总能被轴平分
设函数. (I)求的单调区间; (II)当0<a<2时,求函数在区间上的最小值.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2. 表1:男生身高频数分布表
表2:女生身高频数分布表
(I)求该校男生的人数并完成下面频率分布直方图; (II)估计该校学生身高在的概率; (III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。