.(本小题满分13分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型的基本要求;(2)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为,|OB|=2,设∠AOB=θ,θ∈. (1)用θ表示点B的坐标及|OA|; (2)若tanθ=-,求O·O的值.
如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处. (1)求船的航行速度是每小时多少千米? (2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
在△ABC中,BC=,AC=3,sinC=2sinA. (1)求AB的值; (2)求sin的值.
在△ABC中,角A,B,C的对边分别为a,b,c,已知a+b=5,c=,且cos 2C+2cos(A+B)=-. (1)求角C的大小; (2)求△ABC的面积S.
设a=(-1,1),b=(4,3),c=(5,-2) (1)求证:a与b不共线,并求a与b的夹角的余弦值; (2)求c在a方向上的投影; (3)求λ1和λ2,使c=λ1a+λ2b.