已知a、b、c都是正实数,且ab+bc+ca=1求证:a+b+c
在数列 a n 中, a 1 = 1 , a n + 1 = c a n + c n + 1 ( 2 n + 1 ) ( n ∈ N * ) ,其中实数 c ≠ 0 .
(1)求 a n 的通项公式;
(2)若对一切 k ∈ N * 有 a 2 k > a 2 k - 1 ,求 c 的取值范围。
已知以原点 O 为中心, F ( 5 , 0 ) 为右焦点的双曲线 C 的离心率 e = 5 2 . (I)求双曲线 C 的标准方程及其渐近线方程; (II)如题图,已知过点 M ( x 1 , y 1 ) 的直线 l 1 : x 1 x + 4 y 1 y = 4 与过点 N ( x 2 , y 2 ) (其中 x 2 ≠ x )的直线 l 2 : x 2 x + 4 y 2 y = 4 的交点 E 在双曲线 C 上,直线 M N 与两条渐近线分别交与 G , H 两点,求 △ O G H 的面积.
如图,四棱锥 P - A B C D 中,底面 A B C D 为矩形, P A ⊥ 底面 A B C D , P A = P B 6 ,点 E 是棱 P B 的中点。
( I )求直线 A D 与平面 P B C 的距离; ( I I )若 A D = 3 ,求二面角 A - E C - D 的平面角的余弦值。
已知函数 f x = x - 1 x + a + ln x + 1 其中实数 a ≠ 1 . (I)若 a = - 2 ,求曲线 y = f x 在点 0 , f 0 处的切线方程; (II)若 f x 在 x = 1 处取得极值,试讨论 f x 的单调性.
在甲、乙等6个单位参加的一次"唱读讲传"演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6),求: (I)甲、乙两单位的演出序号至少有一个为奇数的概率; (II)甲、乙两单位之间的演出单位个数 ζ 的分布列与期望。