如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳固性、美观性、实用性等因素,需再加竹条与其顶点连接。要求:(1)在图(1)、(2)中分别加适当根竹条,设计出两种不同的连接方案。(2)通过上面的设计,可以看出至少需再加 根竹条,才能保证风筝骨架稳固、美观和实用。(3)在上面的方案设计过程中,你所应用的数学道理是
如图1, 矩形铁片ABCD中,AD="8," AB="4;" 为了要让铁片能穿过直径为3.8的圆孔, 需对铁片进行处理 (规定铁片与圆孔有接触时铁片不能穿过圆孔). (1)直接写出矩形铁片ABCD的面积 ;(2)如图2, M、N、P、Q分别是AD、AB、BC、CD的中点,将矩形铁片的四个角去掉.①证明四边形MNPQ是菱形;②请你通过计算说明四边形铁片MNPQ能穿过圆孔.(3)如图3, 过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片.当BE=DF=1时,判断直角梯形铁片EBAF能否穿过圆孔, 并说明理由.
已知抛物线过点(8,0),(1)求的值;(2)如图,在抛物线内作矩形ABCD,使点C、D落在抛物线上,点A、B落在轴上,设矩形ABCD的周长为L,求L的最大值;(3)如图,抛物线的顶点为E,对称轴与直线交于点F.将直线EF向右平移个单位后(>0),交直线于点M,交抛物线于点N,若以E、F、M、N为顶点的四边形是平行四边形,求的值.
某商店经销一种成本为每千克40元的产品,若按每千克50元销售,一个月能售出500千克.销售单价每涨1元,月销售量就减少10千克,针对这种产品,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量与月销售利润;(2)商店想在销售额不超过20000元的情况下,使得月销售利润达到8000元,则销售单价应为多少?
已知二次函数的图象经过A(2,0)、B(0,-6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象与轴的另一个交点.
在△ABC中,∠C=90°(1)如图1,P是AC上的点,过点P作直线截△ABC,使截得的三角形与△ABC相似.例如:过点P作PD∥BC交AB于D,则截得的△ADP与△ABC相似.请你在图中画出所有满足条件的直线.(2)如图2,Q是BC上异于点B,C的动点,过点Q作直线截△ABC,使截得的三角形与△ABC相似,直接写出满足条件的直线的条数.(不要求画出具体的直线)