(本小题满分14分)如图,在四棱锥P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC, E为PC的中点,AD=CD=l,BC=PC, (Ⅰ)证明PA∥平面BDE; (Ⅱ)证明AC⊥平面PBD: (Ⅲ)求四棱锥P-ABCD的体积,
已知(1)求数列{}的通项公式(2)数列{}的首项b1=1,前n项和为Tn,且,求数列{}的通项公式.
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求二面角的正切值.
如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
已知曲线是动点到两个定点、距离之比为的点的轨迹。(1)求曲线的方程;(2)求过点与曲线相切的直线方程。
(本小题满分14分)已知函数,.(其中为自然对数的底数),(Ⅰ)设曲线在处的切线与直线垂直,求的值;(Ⅱ)若对于任意实数≥0,恒成立,试确定实数的取值范围;(Ⅲ)当时,是否存在实数,使曲线C:在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.