(本小题满分14分)如图,在四棱锥P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC, E为PC的中点,AD=CD=l,BC=PC, (Ⅰ)证明PA∥平面BDE; (Ⅱ)证明AC⊥平面PBD: (Ⅲ)求四棱锥P-ABCD的体积,
求经过点(2,0)且与曲线相切的直线方程.
求函数y=的导数.
水以20米/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.
点是曲线上任意一点,求点到直线的距离的最小值.
求函数的导数: