一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为(km),出租车离甲地的距离为(km),客车行驶时间为(h),,与的函数关系图象如图所示:(1)根据图象,求出,关于的函数关系式。(2)出发多长时间后两车相遇?此时出租车行驶了多少千米?
如图,在平行四边形ABCD中,点G是BC延长线上一点,AG与BD交于点E,与DC交于点F,如果AB=m,CG=BC,求:(1)DF的长度;(2)三角形ABE与三角形FDE的面积之比.
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是_________ ;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是_________ ;(3)△A2B2C2的面积是_________ 平方单位.
(本题10分)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)、如图,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.
(本题6分) 某厂接到在规定时间内生产1500台冰箱的任务.在生产了300台冰箱后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天生产多少台冰箱?
(本题6分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AO上,这时梯足B到墙底端O的距离为0.7米, 如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?