(本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.(Ⅰ)求面ASD与面BSC所成二面角的大小;(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;(Ⅲ)求点D到平面SBC的距离.
(本小题满分12分)在中,边a,b,c的对角分别为A,B,C;且,面积. (Ⅰ)求a的值; (Ⅱ)设,将图象上所有点的横坐标变为原来的(纵坐标不变)得到的图象,求的单调增区间.
设函数(其中). (Ⅰ)求函数的极值; (Ⅱ)求函数在上的最小值; (Ⅲ)若,判断函数零点个数.
已知数列的前项和为,. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为,,点在直线上,若存在,使不等式成立,求实数的最大值.
当且时,判断与的大小,并给出证明.
已知曲线在处切线与直线垂直. (Ⅰ)求解析式; (Ⅱ)求的单调区间、极值并画出的大致图象.