(本小题满分13分)已知函数(1)如果对任意恒成立,求实数a的取值范围;(2)设实数的两个极值点分别为判断①②③是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数并求出的最小值;(3)对于(2)中的设,试比较(e为自然对数的底)的大小,并证明。
一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水千吨.(1)多少小时后,蓄水池存水量最少?(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?
已知函数,.(1)设是函数的一个零点,求的值;(2)求函数的单调递增区间.
如图,在正四棱锥中,.(1)求该正四棱锥的体积;(2)设为侧棱的中点,求异面直线与所成角的大小.
设点是抛物线的焦点,是抛物线上的个不同的点().(1) 当时,试写出抛物线上的三个定点、、的坐标,从而使得;(2)当时,若,求证:;(3) 当时,某同学对(2)的逆命题,即:“若,则.”开展了研究并发现其为假命题. 请你就此从以下三个研究方向中任选一个开展研究:① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分); ② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
已知数列是首项为的等比数列,且满足.(1) 求常数的值和数列的通项公式;(2) 若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.