已知圆o:与椭圆有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.(1)求椭圆方程。(2)圆o与x轴的两个交点为C、D,B是椭圆上异于点A的一个动点,在线段CD上是否存在点T,使,若存在,请说明理由。
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是“数列”.(Ⅰ)若,,,数列、是否为“数列”?若是,指出它对应的实常数,若不是,请说明理由;(Ⅱ)证明:若数列是“数列”,则数列也是“数列”;(Ⅲ)若数列满足,,为常数.求数列前项的和.
已知函数(Ⅰ)若,求函数的极小值;(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,.(Ⅰ)求直线与的交点的轨迹的方程;(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.
如图,在三棱锥中,,,设顶点在底面上的射影为.(Ⅰ)求证:;(Ⅱ)设点在棱上,且,试求二面角的余弦值.
现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.(Ⅰ)求这4个人中恰好有2人去参加甲项目联欢的概率;(Ⅱ)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率;(Ⅲ)用分别表示这4个人中去参加甲、乙项目联欢的人数,记,求随机变量的分布列与数学期望.