已知圆o:与椭圆有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.(1)求椭圆方程。(2)圆o与x轴的两个交点为C、D,B是椭圆上异于点A的一个动点,在线段CD上是否存在点T,使,若存在,请说明理由。
已知函数()的最小正周期为.(1)求函数的单调增区间;(2)将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象;若在上至少含有10个零点,求b的最小值.
如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
已知函数,其中,是自然对数的底数.(1)求函数的零点;(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;(3)已知,且函数在R上是单调函数,探究函数的单调性.
已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的,都有.(1)若{bn }的首项为4,公比为2,求数列{an+bn}的前n项和Sn;(2)若 ,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行公共自行车按每车每次的租用时间进行收费,具体收费标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,收费1元;③租用时间为2小时以上且不超过3小时,收费2元;④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.(1)求甲、乙两人所付租车费相同的概率;(2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E