郑已知定点A(0,)(>0),直线 :交轴于点B,记过点A且与直线l1相切的圆的圆心为点C.(I)求动点C的轨迹E的方程;(Ⅱ)设倾斜角为的直线过点A,交轨迹E于两点 P、Q,交直线于点R.(1)若tan=1,且ΔPQB的面积为,求的值;(2)若∈[,],求|PR|·|QR|的最小值.
已知函数. (1)求实数的范围,使在区间上是单调函数。 (2)求的最小值。
已知U=R,集合有实根},求,,。
(本小题满分10分) 已知圆与直线相切于点,且圆心在直线上. (Ⅰ)求圆的方程; (Ⅱ)设直线与圆相交于两点,是坐标原点.求的面积最大值,并求取得最大值时直线的方程.
(本小题满分10分) 设数列的前n项和,数列满足,(其中),求数列的前项和.
(本小题满分10分) 袋中有大小、形状相同的白、黑球各一个,现有放回地随机摸取3次,每次摸取一个球. (Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果; (Ⅱ)若摸到白球时得1分,摸到黑球时得2分,求3次摸球所得总分大于4分的概率.