郑已知定点A(0,)(>0),直线 :交轴于点B,记过点A且与直线l1相切的圆的圆心为点C.(I)求动点C的轨迹E的方程;(Ⅱ)设倾斜角为的直线过点A,交轨迹E于两点 P、Q,交直线于点R.(1)若tan=1,且ΔPQB的面积为,求的值;(2)若∈[,],求|PR|·|QR|的最小值.
若向量,其中,记函数,若函数的图象与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。 (1)求的表达式及的值; (2)将函数的图象向左平移,得到的图象,当时,的交点横坐标成等比数列,求钝角的值。
(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。 (I)求椭圆的方程; (Ⅱ)求线段MN的长度的最小值; (Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这 样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由
(本小题满分12分)己知函数 (1)求的单调区间; (2)若时,恒成立,求的取值范围; (3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。
(本小题满分12分) 等比数列{}的前n项和为, 已知对任意的,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记求数列的前项和
(本小题满分12分) 如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC. (1)求三棱锥D-ABC的表面积; (2)求证AC⊥平面DEF; (3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.