甲盒中有1个黑球1个白球;乙盒中有1个黑球2个红球.这些球除了颜色不同外其余无差别. (Ⅰ)从两个盒子中各取1个球,求取出的两个球颜色不同的概率.(Ⅱ)若把两盒中所有的球混合后放入丙盒中.从丙盒中一次取出两个球,求取出的两个球颜色不同的概率.
(本小题满分12分)已知函数 (I)求函数的最小值和最小正周期 (II)设的内角的对边分别为,且,若向量与向量共线,求的值.
.(本小题满分12分)如图,两点有5条连线并联,它们在单位时间内能通过的信息量依次为.现从中任取三条线且记在单位时间内通过的信息总量为. (Ⅰ)写出信息总量的分布列; (Ⅱ)求信息总量的数学期望.
已知函数 (Ⅰ)如,求的单调区间; (Ⅱ)若在单调增加,在单调减少,证明<6.
已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为 (I)求,的值; (II)上是否存在点P,使得当绕F转到某一位置时,有成立? 若存在,求出所有的P的坐标与的方程;若不存在,说明理由。
某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率; (Ⅱ)求,的值; (Ⅲ)求数学期望ξ。