如图所示,在Rt△ABC中,∠B=90°,AB=18cm,BC=36cm,一点P从A沿AB边以2cm/s的速度向B点移动;点Q从B点开始沿BC边以6cm/s的速度向C点移动。如果P、Q两点同时出发,求几秒后Rt△BPQ的面子等于Rt△ABC的面积的
(8分)如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O 于点C,OC平分∠AOB.求∠B的度数.
(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图. 请根据图中提供的信息,解答下面的问题: (1)参加调查的学生共有人,在扇形图中,表示“其他球类”的扇形的圆心角为度; (2)将条形图补充完整; (3)若该校有2000名学生,则估计喜欢“篮球”的学生共有人.
.如图,已知直线l经过点A(1,0),与双曲线y= (x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平 行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N. (1)求m的值和直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA; (3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若 不存在,请说明理由.
(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点. (1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上; (2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么? (3)求a和k的值.
(10分)如图1,O为正方形ABCD的中心, 分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针 旋转角得到△E1OF1(如图2). (1)探究AE1与BF1的数量关系,并给予证明; (2)当=30°时,求证:△AOE1为直角三角形.