已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E.(1)求动点E的轨迹方程;(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程.
设数列的前项和。 (1)求; (2)证明:是等比数列;
如图,圆O1与圆O2的半径都是1,,过动点P分别作圆O1.圆O2的切线PM、PN(M.N分别为切点),使得试建立适当的坐标系,并求动点P的轨迹方程
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 求证:(1)PC⊥BC; (2)求点A到平面PBC的距离。
选修4—5:不等式选讲 设函数= (I)求函数的最小值m; (II)若不等式恒成立,求实数a的取值范围.
在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位。且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为 (I)求圆C的直角坐标方程; (Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求的最小值.