小慧和小华玩猜数游戏,小慧对小华说:“你想好一个数,这个数乘以6,加上3;得到的数除以3,再减去你想的数.只要你告诉我正确的结果,我就知道你想的数是几.”小华很好奇,就想了一个数,并按小慧说的方法计算出结果,告诉小慧说:“我计算结果是 -2.”请你解决以下问题:(1)小慧可以猜出小华想的数是 .(2)请你用代数方法说明,小慧为什么总能猜出别人(不一定是小华)想的数.(3)请你也设计一个猜数游戏,要求是:让对方想一个数,按你规定的方法运算,然后你可以猜出对方的计算结果.
某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”、“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中: (1)该顾客至少可得元购物券,至多可得元购物券; (2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
如图所示,某海滨浴场东西走向的海岸线可近似看作直线. 救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号. 他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙. 乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东方向,甲、乙的游泳速度均是2米/秒.问谁先到达B处?请说明理由.
如图,在正方形ABCD中,等边的顶点E、F分别在BC和CD上. (1)求证:CE=CF; (2)若等边的边长为2,求正方形ABCD的边长.
某地为了了解当地推进“阳光体育”运动情况,就“中小学每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见表):
请根据上述信息解答下列问题: (1)B组的人数是人; (2)本次调查数据(指体育活动时间)的中位数落在组内; (3)若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?
如图,在平面直角坐标系中,已知抛物线y=-x2+bx+c经过点A(0,1)、B(3,)两点,BC⊥x轴,垂足为C.点P是线段AB上的一动点(不与A,B重合),过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t. (1)求此抛物线的函数表达式; (2)连结AM、BM,设△AMB的面积为S,求S关于t的函数关系式,并求出S的最大值; (3)连结PC,当t为何值时,四边形PMBC是菱形.