(本小题12分)如图3,已知在侧棱垂直于底面的三棱柱中,AC="BC," AC⊥BC,点D是A1B1中点. (1)求证:平面AC1D⊥平面A1ABB1;(2)若AC1与平面A1ABB1所成角的正弦值为,求二面角D- AC1-A1的余弦值.
选修4—4:坐标系与参数方程. 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.
(本小题满分12分)设函数(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对任意恒成立,求实数的最小值;(Ⅲ)设是函数图象上任意不同两点,线段AB中点为C,直线AB的斜率为k.证明:.
(本小题满分12分)已知离心率为的椭圆与直线相交于两点(点在轴上方),且.点是椭圆上位于直线两侧的两个动点,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)求四边形面积的取值范围.
(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.