已知:抛物线,对称轴为直线,抛物线与y轴交于点,与轴交于、两点.(1)求直线的解析式;(2)若点是线段下方抛物线上的动点,求四边形面积的最大值;(3)为抛物线上一点,若以线段为直径的圆与直线切于点,求点的坐标.
已知A=y2-ay-1,B=2y2+3ay-2y-1,且多项式2A-B的值与字母y的取值无关,求a的值.
解方程:
化简求值.4ab+2b2-[(a2+b2)-(a2-b2)];其中a=-2,b=3
解方程:3(x-1)=5x+4
(1)如图1,满足. ①求的值; ②若C(-6,0),连CB,作BE⊥CB,垂足为B,且BC=BE,连AE交轴于P,求P点坐标. (2)如图2,若A(6,0),B(0,3),点Q从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点Q运动时间为秒,过Q点作直线AB的垂线,垂足为D,直线QD与轴交于E点,在点Q的运动过程中,一定存在△EOQ≌△AOB,请直接写出存在的值以及相应的E点坐标.