已知:抛物线,对称轴为直线,抛物线与y轴交于点,与轴交于、两点.(1)求直线的解析式;(2)若点是线段下方抛物线上的动点,求四边形面积的最大值;(3)为抛物线上一点,若以线段为直径的圆与直线切于点,求点的坐标.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)BD与CD有什么数量关系?并说明理由. (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
如图所示,在□ABCD中,对角线AC、BD交于点O,直线EF经过点O交BC于F、交AD于E,且AF⊥BC.求证:四边形AFCE是矩形.
如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F. (1)求证:△AOE≌△COF. (2)连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形?并说明理由.
在Rt△ABC中,∠ACB=90°,AB=2AC,如图所示,求∠A、∠B的度数.