、 已知≤≤1,若函数在区间[1,3]上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断并证明函数在区间[,1]上的单调性;并求出的最小值 .
已知函数, (Ⅰ)若函数在上是减函数,求实数的取值范围; (Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由; (III)当时,证明:
已知平面上一定点C(4,0)和一定直线为该平面上一动点,作,垂足为Q,且( (Ⅰ)问点P在什么曲线上?并求出该曲线的方程; (Ⅱ)设直线与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值,若不存在,说明理由
已知斜三棱柱的底面是直角三角形,,侧棱与底面所成角为,点在底面上射影D落在BC上. (Ⅰ)求证:平面; (Ⅱ)若点D恰为BC中点,且,求的大小; (III)若,且当时,求二面角的大小.
设、、分别是△ABC三个内角A、B、C的对边,若向量,且. (Ⅰ)求的值; (Ⅱ)求的最大值.
已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.