(本小题满分14分)已知数列{an}中,a1=t(t∈R,且t≠0,1),a2=t2,且当x=t时,函数f(x)=(an-an-1)x2-(an+1-an)x(n≥2,n∈N)取得极值.(Ⅰ)求证:数列{an+1-an}是等比数列;(Ⅱ)若bn=anln|an|(n∈N),求数列{bn}的前n项和Sn;(Ⅲ)当t=-时,数列{bn}中是否存在最大项?如果存在,说明是第几项;如果不存在,请说明理由.
如图,已知矩形ABCD中,AB=1,BC=,PA平面ABCD,且PA=1。(1)问BC边上是否存在点Q,使得PQQD?并说明理由;(2)若边上有且只有一个点Q,使得PQQD,求这时二面角Q的正切。
袋中有大小、形状相同的红、黑球各一个,先依次有放回地随机摸去三次,,每次摸取一个球.(1)试问:一共有多少中不同的结果?请列出所有可能的结果;(2)若摸到红球得2分,摸到黑球时得1分,求3次摸球所得总分为5分的概率;(3)求3次摸球中,至少2次摸到红球的概率.
样本容量为 的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[6,18)内的频数是40..
根据右侧程序语句画程序框图,并说明该程序的功能.(其中,)
某企业三月中旬生产了A、B、C三种产品件, 根据分层抽样的结果,企业统计员制作了 如图所示的表格
(1) 求,的值; (2) 若用系统抽样法从A 种产品中抽取样本,将A产品随机按1~900编号,并按编号顺序平均分组,若第1组抽出的编号是7,则第5组抽出的编号是多少?