(本题9分)已知函数f(x)=2cosx(sinx-cosx)+1。(1)求函数f(x)的最小值以及取最小值时x的取值;(2)求函数f(x)的单调递增区间。
(本小题满分12分)如图,在三棱柱中,点在侧面的射影为正方形的中心M,且,,E为的中点.(1)求证:║平面;(2)求二面角的正弦值;(3)在正方形(包括边界)内是否存在点,使得平面?若存在,求出线段的长;若不存在,说明理由.
(本小题满分12分)已知圆,过圆上一点A(3,2)的动直线与圆相交于另一个不同的点B.(1)求线段AB的中点P的轨迹M的方程;(2)若直线与曲线M只有一个交点,求的值.
(本小题满分12分)如图,已知长方形中,,为的中点. 将沿折起,使得平面平面为的中点. (1)求证:; (2)求直线与平面ADM所成角的正弦值.
(本小题满分10分)设命题p:函数的定义域为R,命题q:双曲线的离心率,(1)如果p是真命题,求实数的取值范围;(2)如果命题“p或q”为真命题,且命题“p且q”为假命题,求实数的取值范围.
(本小题12分)已知函数(1)当时,求方程的解;(2)若方程在上有实数根,求实数的取值范围;(3)当时,若对任意的,总存在,使成立,求实数的取值范围.