((本小题满分12分)已知点,一动圆过点且与圆内切.(1)求动圆圆心的轨迹的方程;(2)设点,点为曲线上任一点,求点到点距离的最大值;(3)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数使得恒成立,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
(本小题满分10分)选修4-5:不等式选讲 设函数. (1)解不等式; (2)若对一切实数均成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角. (1)写出圆的标准方程和直线的参数方程; (2)设直线与圆相交于,两点,求的值.
(本小题满分12分)已知椭圆:,,其中是椭圆的右焦点,焦距为,直线与椭圆交于点,,点,的中点横坐标为,且(其中). (1)求椭圆的标准方程; (2)求实数的值.
(本小题满分12分)如图,设四棱锥的底面为菱形,且,,. (1)证明:平面平面; (2)求四棱锥的体积.
(本小题满分12分)某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表1所示 表1
(1)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少? (2)运用独立检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.