((本小题满分12分)已知椭圆:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.(1) 求椭圆C的方程;(2) 若,求直线l的方程.
已知函数. (1)若对于都有成立,试求a的取值范围; (2)记,当时,函数在区间上有两个零点,求实数b的取值范围.
已知,其中,. (1)求的周期和单调递减区间; (2)在△ABC中,角A,B,C的对边分别为,,,求边长和的值().
设为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为-12. (1)求的值; (2)求函数的单调递增区间,极大值和极小值,并求函数f(x)在上的最大值与最小值.
已知正项数列{}的前项和为,且,,成等差数列. (1)证明数列{}是等比数列; (2)若,求数列的前项和.
已知:,为常数) 若,求的最小正周期; 若在上的最大值与最小值之和为3,求的值.