((本小题满分12分)已知椭圆:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.(1) 求椭圆C的方程;(2) 若,求直线l的方程.
如图,圆内有一点P(-1,2),弦AB为过点P. (1) 当弦AB被点P平分时,求出直线AB的方程; (2) 设过P点的弦的中点为,求点的坐标所满足的关系式.
.已知,设在R上单调递减,的值域为R,如果“或”为真命题,“或”也为真命题,求实数的取值范围。
.设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
如图,在直四棱柱中,为中点,点在上。(1)试确定点的位置,使;(2)当时,求二面角的正切值。
.某初级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y245,z245,求初三年级中女生比男生多的概率.