设函数的定义域为全体R,当x<0时,,且对任意的实数x,y∈R,有成立,数列满足,且(n∈N*)(Ⅰ)求证:是R上的减函数;(Ⅱ)求数列的通项公式;(Ⅲ)若不等式对一切n∈N*均成立,求k的最大值.
(本小题满分14分)设甲、乙两套试验方案在一次试验中成功的概率均为p,且这两套试验方案中至少有一套试验成功的概率为0.51,假设这两套试验方案在试验过程中,相互之间没有影响.,设试验成功的方案的个数为.(Ⅰ)求p的值;(Ⅱ)求的数学期望E与方差D.
(本小题满分14分)设数列的前项和为,且,为等差数列,且,.(Ⅰ)求数列和通项公式;(Ⅱ)设,求数列的前项和.
(本小题满分12分)盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率. (Ⅰ)取到的2只都是次品;(Ⅱ)取到的2只中恰有一只次品.
如图,,双曲线M是以B、C为焦点且过A点.(Ⅰ)建立适当的坐标系,求双曲线M的方程;(Ⅱ)设过点E(1,0)的直线l分别与双曲线M的左、右支交于F、G两点,直线l的斜率为k,求k的取值范围.;(Ⅲ)对于(II)中的直线l,是否存在k使|OF|=|OG|若有求出k的值,若没有说明理由.(O为原点)
(本题满分为14分)已知,().(Ⅰ)求出f(x)的极值点,并指出其是极大值点还是极小值点;(Ⅱ)若f(x)在区间上最大值是5,最小值是-11,求的解析式.