(1)如图1,请你类比直线和一个圆的三种位置关系,在图1的①、②、③中,分别各画出一条直线,使它与两个圆都相离、与两个圆都相切、与一个圆相离且与另一个圆相交,并在图1的④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系;(2)如图2,点、在直线MN上,AB=11厘米,、的半径均为1厘米.以每秒2厘米的速度自左向右运动,与此同时,的半径也不断增大,其半径(厘米)与时间t(秒)之间的关系式为 .请直接写出点出发后多少秒两圆内切?
有4张看上去无差别的卡片,上面分别写有数 - 1 ,2,5,8.
(1)随机抽取一张卡片,则抽取到的数是偶数的概率为 ;
(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.
如图,在 ▱ ABCD 中,点 E 在 AB 的延长线上,点 F 在 CD 的延长线上,满足 BE = DF .连接 EF ,分别与 BC , AD 交于点 G , H .
求证: EG = FH .
计算: - 8 3 + | 3 - 1 | - 2 sin 60 ° + ( 1 4 ) 0 .
如图,直线 y = - 1 2 x + 2 交 y 轴于点 A ,交 x 轴于点 C ,抛物线 y = - 1 4 x 2 + bx + c 经过点 A ,点 C ,且交 x 轴于另一点 B .
(1)直接写出点 A ,点 B ,点 C 的坐标及拋物线的解析式;
(2)在直线 AC 上方的抛物线上有一点 M ,求四边形 ABCM 面积的最大值及此时点 M 的坐标;
(3)将线段 OA 绕 x 轴上的动点 P ( m , 0 ) 顺时针旋转 90 ° 得到线段 O ' A ' ,若线段 O ' A ' 与抛物线只有一个公共点,请结合函数图象,求 m 的取值范围.
在 ΔABC 中, ∠ BAC = = 90 ° , AB = AC ,点 D 在边 BC 上, DE ⊥ DA 且 DE = DA , AE 交边 BC 于点 F ,连接 CE .
(1)特例发现:如图1,当 AD = AF 时,
①求证: BD = CF ;
②推断: ∠ ACE = ° ;
(2)探究证明:如图2,当 AD ≠ AF 时,请探究 ∠ ACE 的度数是否为定值,并说明理由;
(3)拓展运用:如图3,在(2)的条件下,当 EF AF = 1 3 时,过点 D 作 AE 的垂线,交 AE 于点 P ,交 AC 于点 K ,若 CK = 16 3 ,求 DF 的长.